设各项均为正数的数列{an}的前项和为sn,已知2a2=a1+a3,数列{根号sn}是公差为2的等差数列,
求数列{an}的通项公式.请各位帮帮忙·······
人气:488 ℃ 时间:2019-08-21 02:28:55
解答
结果是an=4(2n+1);
首先由s1,s2,s3的关系可列出两个方程,关于a1,a2,a3.和已知的2a2=a1+a3联立,求出a1=4.
接下来,利用根号sn是等差数列,推导出s(n)和a1的关系,s(n-1)和a1的关系,二者相减,即可求出通项an.你试着推一下,加油!
推荐
- 设各项均为正数的数列{an}的前n项和为Sn已知2a2=a1+a3数列{根号Sn}的公差为d的等差数列
- 设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列{根号Sn}是公差为2的等差数列.(1)求数列{an}的通项公式;(2)求数列{an/2^n}的前n项和Tn.
- 设各项均为正数的数列{an}的前n项和为Sn,已知2a1=a1+a3,数列{根号下Sn}是公差为2的等差数列
- 设数列{an}是首项为a1(a1>0),公差为2的等差数列,前n项和为Sn,且根号S1,根号S2,根号S3成等差数列,
- 设正数a1,a2,a3,···an成等差数列,求证:1/(根号a1+根号a2)+1/(根号a2+根号a3)+···+1/(根号an+a(n-1)
- 空气污染怎么治理呢
- 《道德经》读后感 2000字
- a b为正实数1/a+1/b 与1/a+b大小关系及解析
猜你喜欢