求证一道线性代数证明题
设A是m*n矩阵且行满秩,B是n*(n-m) 且列满秩,且AB=O求证若η是齐次线性方程组AX=0的解,则存在唯一的ζ使Bζ=η
人气:434 ℃ 时间:2020-03-21 04:04:38
解答
由已知,r(A)=m
所以 AX=0 的基础解系含 n-m 个向量.
因为 AB=0
所以B的列向量都是AX=0的解
又因为B列满秩,r(B)=n-m
所以B的列向量构成AX=0的基础解系
所以AX=0的解η可由B的列向量组唯一线性表示
即BX=η有唯一解ζ.
推荐
猜你喜欢
- 已知极限lim(x→∞)(x^2+1)/x+1-(ax+b)=0,求常数a,b
- 一块平行四边形的菜地,底80M,6M,这地共收油菜籽842.24千克,平均没公顷能收多少千克的油菜籽
- 时针和分针在一昼夜重合多少次?
- 等量同种电荷连线中点,电势不为零 为什么
- NaHCO3与Na2CO3反应
- 滴定操作时,为什么经过三十秒不褪色为终点
- 人类改变环境的能力超过其他生物的原因,为什么包括 产生了语言,大脑的发育,能制造工具这三方面?
- 已知:如图,在平行四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA上的点,且AE=CG,BF=DH. 求证:△AEH≌△CGF.