求证一道线性代数证明题
设A是m*n矩阵且行满秩,B是n*(n-m) 且列满秩,且AB=O求证若η是齐次线性方程组AX=0的解,则存在唯一的ζ使Bζ=η
人气:383 ℃ 时间:2020-03-21 04:04:38
解答
由已知,r(A)=m
所以 AX=0 的基础解系含 n-m 个向量.
因为 AB=0
所以B的列向量都是AX=0的解
又因为B列满秩,r(B)=n-m
所以B的列向量构成AX=0的基础解系
所以AX=0的解η可由B的列向量组唯一线性表示
即BX=η有唯一解ζ.
推荐
猜你喜欢
- 蒲松龄,字 ,一字剑臣,号 ,聊斋志异,“志”是 意思“异”指
- 我家从总自来水管水表出分了两条管出来用,总管水压很大,两条管单管径25.但总和长度超过60米,一直走平地请,最高点是4米.问为什么单开一个水龙头有压力,在开一个水龙头压力就很小了.
- there is a white building ___the name "bush house"
- 2 2 若集合M={x|x+x-6=0},N={x|x+x+a=0},且N是M的子集,求实数a的值
- 水光潋滟晴方好中潋滟的解释是什么
- 有两箱水果,从甲箱中取出1/4 ,乙箱中取出20%,剩下的水果甲箱与乙箱相等,已知甲箱原有水果60千克,求乙
- how about ——(do) the dishes?
- 在直径是10cm的圆形纸片上剪下一个最大的正方形,这个正方形的面积是( )cm的平方