|
|
解得m=-1,a=2,故函数解析式为f(x)=-1+log2x,
(Ⅱ)g(x)=2f(x)-f(x-1)=2(-1+log2x)-[-1+log2(x-1)]=log2
x2 |
x−1 |
因为
x2 |
x−1 |
(x−1)2+2(x−1)+1 |
x−1 |
1 |
x−1 |
(x−1)•
|
当且仅当x−1=
1 |
x−1 |
而函数y=log2x-1在(0,+∞)上单调递增,则log2
x2 |
x−1 |
故当x=2时,函数g(x)取得最小值1.
|
|
x2 |
x−1 |
x2 |
x−1 |
(x−1)2+2(x−1)+1 |
x−1 |
1 |
x−1 |
(x−1)•
|
1 |
x−1 |
x2 |
x−1 |