已知向量a=(sinx,√3),b=(2cosx,cos2x),函数f(x)=ab,求f(x)的解析式和它的单调减区间
人气:147 ℃ 时间:2019-08-20 21:55:14
解答
f(x)=ab=(sinx,√3).(2cosx,cos2x)
=2sinxcosx+√3cos2x
=sin2x+√3cos2x
=2sin(2x+π/3)
它的单调减区间
2kπ+π/2≤2x+π/3≤2kπ+3π/2
即kπ+π/12≤x≤kπ+7π/12 (k∈Z)
推荐
- 已知向量a=(sinx,√3),b=(2cosx,cos2x),函数f(x)=ab,求f(x)的解析式和它的单调减
- 已知向量a=(2cosx,cos2x),b=(sinx,√3),函数f(x)=a*b,(x∈R)
- 已知向量a=(sinx,根号3)b=(2cosx,cos2x),函数f(x)=a*b,求函数f(x)的解析式和单调递减区间
- 已知向量a=(sinx,1),b=(2cosx,2+cos2x)函数f(x)=ab 1:求f(x)的最小正周期 2 求函数f(x)的最大值及
- 已知向量a=(2cosx+1,cos2x-sinx+1),b=(cos,-1),定义函数f(x)=a点乘b
- -1/2x的平方-3x=1 用配方法解
- 把一块长三十厘米,宽二十五厘米的长方形铁皮的四个角上分别剪去边长为五厘米的小正方形,再把他焊成一个无盖的长方体铁盒,它的容积是多少
- 2.6×302怎样简便运算
猜你喜欢