> 数学 >
设集合X是实数集R的子集,如果点x0∈R满足:对任意a>0,都存在x∈X,使得0<|x-x0|<a,称x0为集合X的聚点.用Z表示整数集,则在下列集合中:
{
n
n+1
|n∈Z,n≥0}
;  ②{x|x∈R,x≠0};③{
1
n
|n∈Z,n≠0}
;   ④整数集Z
以0为聚点的集合有(  )
A. ②③
B. ①④
C. ①③
D. ①②④
人气:216 ℃ 时间:2019-08-16 22:55:49
解答
①中,集合{
n
n+1
|n∈Z,n≥0}
中的元素是极限为1的数列,
除了第一项0之外,其余的都至少比0大
1
2

∴在a<
1
2
的时候,不存在满足得0<|x|<a的x,
∴0不是集合{
n
n+1
|n∈Z,n≥0}
的聚点
②集合{x|x∈R,x≠0},对任意的a,都存在x=
a
2
(实际上任意比a小得数都可以),使得0<|x|=
a
2
<a
∴0是集合{x|x∈R,x≠0}的聚点
③集合{
1
n
|n∈Z,n≠0}
中的元素是极限为0的数列,
对于任意的a>0,存在n>
1
a
,使0<|x|=
1
n
<a
∴0是集合{
1
n
|n∈Z,n≠0}
的聚点
④对于某个a<1,比如a=0.5,此时对任意的x∈Z,都有|x-0|=0或者|x-0|≥1,也就是说不可能0<|x-0|<0.5,从而0不是整数集Z的聚点
故选A
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版