设f∈C[A,B],a,b∈(A,B),证明:lim1\h ∫ (f(x+h)-f(x))dx=f(b)-f(a) (h趋向于0,积分区间是从a到b)
人气:102 ℃ 时间:2020-02-05 23:42:35
解答
lim(h→0)1/h ∫ _a^b (f(x+h)-f(x))dx
=lim(h→0)[∫ _b^{b+h}1/h f(x)dx-∫ _a^{a+h}1/h f(x)dx]
=f(b)-f(a)
(最后一步由连续性)
推荐
- 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 定积分证明题:f(x)在闭区间a到b上连续,求证:,∫b到a f(x)dx=,∫b到a f(a+b-x)dx
- 设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx
- 设f(x)在区间 [a,b]上连续,证明1/(b-a)∫f(x)dx≤(1/(b-a)∫f²(x)dx)^½
- 积分证明 已知,在区间[0,1]上f(x)连续且f(x)>0,证明∫f(x)dx∫1/f(x)dx≥1 积分区域均为0到1
- A={x/x²+4x=0}B={x/x²+2(a+1)x+a²-1=0,a属于R} x属于R 如果A∩B=B,求a的取值范围
- (x+y)²-10(x+y)+25 4m²-9n²-4m+1
- 改革开放以来我国在经济、政治、国防、外交、科技、文教、社会生活等方面的重大变化
猜你喜欢