设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
前面第一个积分符号积分区间是[0,1],第二个积分符号积分区间是[0,x],第三个积分符号积分区间是[0,1].
人气:121 ℃ 时间:2019-08-20 04:37:54
解答
调换一下积分次序即可.
对式子左边先对x积分,后对t 积分,则为∫[∫f(t)dx]dt.前面第一个积分符号积分区间是[0,1],第二个积分符号积分区间是[t,1].
f(t)对先x积分得到的结果就是f(t)*(1-t).现在就只是关于t式子,用x替换t不影响定积分的结果,替换之后就是原式右边
推荐
- 设f(x)是闭区间[0,1]上的连续函数,且f(x)=[1/(1+x^2)]+x^2∫f(t)dt,求∫f(x)dx.定积分上限1,下限0.
- 设函数f(x)在区间[a,b]上连续,在(a,b)内可导且f'(x)≤0,F(X)=1\(x-a)·∫<a,x>f(t)dt 证明:在内有
- 那个关于定积分的题目的答案看不懂啊 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 设函数f(x)在[a,b]上连续,在(a,b)内可导且f'(x)
- 设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
- 函数f(x)=(x2-x-2)|x3-x|的不可导点的个数为( ) A.0 B.1 C.2 D.3
- 已知xy满足条件x-2y+7≥0,4x-3y-12≤0,x+2y-3≥0求z=x²+y²
- 从0~9这10个数字中选出2个奇数2个偶数,可以组成多少个4位数?
猜你喜欢