设f(x)连续,证明(积分区间为0到π)∫xf(sinx)dx=(π/2)∫f(sinx)dx
人气:101 ℃ 时间:2019-08-18 02:37:33
解答
证明:令x=π-t,则x由0到π,t由π到0,dx=-dt
原式记为I
则I=-(积分区间π到0)∫(π-t)f(sin(π-t)dt
=-(积分区间π到0)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫(π-t)f(sin(t)dt
=(积分区间0到π)∫πf(sin(t)dt-I
所以2I=(积分区间0到π)∫πf(sin(t)dt
即I=(π/2)∫f(sint)dt=(π/2)∫f(sinx)dx
推荐
- 证明∫(上π,下0)xf(sinx)dx=π/2∫(上π,下0)f(sinx)dx
- 设f(x)连续,证明(积分区间为0到2π)∫xf(cosx)dx=π∫f(sinx)dx
- 设f(x)在【0,1】上连续.证明∫(π/2~0)f(cosx)dx=∫(π/2~0)f(sinx)dx
- 证明:若函数f(x)在[0,1]上连续,则∫xf(sinx)dx=π/2∫f(sinx)dx (上限 π,下限 0)
- 设f(x)∈C[0,1],证明∫(π,0)*x*f(sinx)dx =π/2*∫(π,0)*f(sinx)dx
- lim(x趋向0) x^2 / (sin^2) * x/3
- 是否存在分母为12的比六分之五小的最简分数,如果存在,写出所有符合条件的最简分数
- 《钱塘湖春行》作者为了描写出春天的美好,选了那些景物?用一个字概括.
猜你喜欢