【数学分析】设p(x)为多项式,即p(x)=anx^n+...+a1x+a0,证明下面两个问题
设p(x)为多项式,即p(x)=anx^n+...+a1x+a0,证明:
(1)存在x0>0,使p(x)分别在(-∞,x0],[xo,+∞)严格单调
(2)若n为偶数,则当an>0时,p(x)必有最小值;当an
人气:429 ℃ 时间:2020-04-11 05:33:16
解答
(1) F(X)= P(X+1)-P(X)=an(x+1)^n+...+a1+a0-[anX^n+...+a1x+a0 ]=an(x+1)^n,当a>0,x0,(X+1)^n
推荐
- 多项式F(X)=a0+a1x+a2x^2+...+anx^n,证明:F(X)=0有n+1个不同根,则F(X)恒等于0
- 设a0+a1 /2+.+an /(n+1)=0 证明多项式f(x)=a0+a1x+.+anx^n在(0,1)内至少有一个零点
- 设f(x)=a0+a1x+...+anx^n为n次整系数多项式,若an、a0、f(1)都为奇数,证明:f(x)=0无有理根
- 设m次多项式f(x)=a0+a1x+...+am*x^m,设A=PYP^-1,证明f(A)=Pf(Y)p^-1
- 设a0+a1/2+...+an/(n+1)=0,证明多项式f(x)=a0+a1x+...+anx^n在(0,1)内至少有一个零点.
- 已知a-b=五分之一,a的平方加b的平方=25分之51,求(ab)的2008次方
- Tom didn't pass the test 同义句
- 翻译下列句子.
猜你喜欢