平方和公式:1^2+2^2+3^2…+n^2=(1/6)n(n+1)(2n+1)
数学归纳法怎么用请说详细点
人气:341 ℃ 时间:2019-08-22 09:10:57
解答
先验证n=1,2,3.时,等式成立.
假设n=k时,等式成立,则n=k+1时,证明等式同样成立,则命题得证.
也就是如果1^2+2^2+3^2…+k^2=(1/6)k(k+1)(2k+1)成立,则
1^2+2^2+3^2…+k^2+(k+1)^2=(1/6)k(k+1)(2k+1)+(k+1)^2=(1/6)(k+1)(k+2)(2k+3)
所以,该公式成立.
推荐
猜你喜欢
- 什么头什么角的成语?
- 六(2)班有45名同学.这45名同学中至少有多少人是在同一个月出生的?为什么?
- 求半径为R的正六边形的中心角,边长,边心距,周长,面积?
- ‘乇’是怎么读
- 形容做事认真、细致,一点也不马虎的词语是?
- 用力F推水平地面上一质量为M的木箱.设力F与水平面的夹角 θ 为,木箱月地面间的摩系数为μ.
- 我认为有些人的格言很激励人,想知道大家的人生格言是什么.
- 每本书定价5元,购买不足20本的,每本可以9折;超过20本(包括20本),每本7折.现在有人两次买书30本,共花费115元,则两次分别买?本、?本