b2+c2−a2 |
2bc |
bc |
2bc |
1 |
2 |
因此,在△ABC中,∠C=180°-∠A-∠B=120°-∠B.
由已知条件,应用正弦定理
1 |
2 |
3 |
c |
b |
sinC |
sinB |
sin(120°−B) |
sinB |
sin120°cosB−cos120°sinB |
sinB |
| ||
2 |
1 |
2 |
解得cotB=2,从而tanB=
1 |
2 |
所以∠A=60°,tanB=
1 |
2 |
c |
b |
1 |
2 |
3 |
b2+c2−a2 |
2bc |
bc |
2bc |
1 |
2 |
1 |
2 |
3 |
c |
b |
sinC |
sinB |
sin(120°−B) |
sinB |
sin120°cosB−cos120°sinB |
sinB |
| ||
2 |
1 |
2 |
1 |
2 |
1 |
2 |