> 数学 >
求积分 ∫lntanx/sinxcosx dx
人气:163 ℃ 时间:2020-06-03 03:51:32
解答
∫ln(tanx) / (sinxcosx) dx
= ∫(ln(tanx)*sec²x)/(secx*sinx) dx
= ∫ln(tanx) / (tanx) d(tanx)
= ∫ln(tanx) d[ln(tanx)],将ln(tanx)当作一个个体,当是做∫x dx这个积分一样便可以了
= (1/2)[ln(tanx)]² + C
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版