如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2倍根号2,角PAB=60°,
⑴证明AD⊥平面PAB.⑵求异面直线PC与AD所成的角的正切值.⑶求二面角P-BD-A的正切值.只要第三问,说个大概就可以了!
人气:475 ℃ 时间:2019-08-29 05:32:32
解答
(1)因为PA=2,AD=2,PD=2√2,则PA的平方加上AD的平方等于PD的平方,根据勾股定理可知AD垂直于PA.又因为ABCD是矩形,所以,AD垂直于AB.综上,AD垂直于平面PAB中两条不平行的直线,所以AD⊥平面PAB.
(2)PC与AD所成的角,因为AD平行于BC,也就是PC与BC所成的角.由三角形余弦定理2PA*AB*cos∠PAB=PA的平方+AB的平方—PB的平方,解出PB=√7,则PC与BC所成的角的正切值等于PB/BC=√7/2
(3)PD等于2√2,PB等于√7,BD等于√13,由余弦定理可解出COS∠PBD=6/√91,.在BD上取一点E使PE⊥BD,可解出BE=6/√13,PE=√(55/13).在AB上取一点F,使FE⊥BD,解出FE=4/√13,BF=2,AF=1,再根据余弦定理解出PF=√3,此时已知道PF、EF和PE的长度,根据与玄定理可解出二面角P-BD-A的余弦值为21/(4√55),再算正弦值为√(439/880),二者相除,解出二面角P-BD-A的正切值为√439/21.应该是这样,已经好多年不学几何了,不知道对错,你可以算下
推荐
- 在四棱锥P-ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2根号2,角PAB=60度.
- 在四棱锥P—ABCD中,底面ABCD是矩形,已知AB=3,AD=2,PA=2,PD=2*根号2.
- 如图,在四棱锥P-ABCD中,ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=3,点F是PD的中点,点E在CD上移动. (1)求三棱锥E-PAB体积; (2)当点E为CD的中点时,试判断EF与平面PAC的关系,并说明理
- 在四棱锥P-ABCD中,AD⊥AB,CD∥AB,PD⊥底面ABCD,AB/AD=2,∠PAD=60°,点M,N分别是PA,PB的中点. (I)求证:MN∥面ABCD; (II)如果△CDN为直角三角形,求CD/AB的值.
- 已知PA⊥矩形ABCD所在平面,PA=AD=根号2AB,E为线段PD上一点,G为线段PD上中点(2)当PE/ED=2时,求证:BG‖平面AEC
- 一个正方体的地面积是49平方分米,它的体积是多少立方分米
- I have read up to (where'what) the children discover the secret cave.选what还是where.
- 怎么样用数列极限的定义证明lim0.999…9(n个)=1(n趋近于无穷)
猜你喜欢