证明y=x+(1/x)在(0,1)是减函数
人气:481 ℃ 时间:2020-06-20 07:50:06
解答
y=f(x)=x+(1/x)
设0那么,
f(x1)-f(x2)
=(x1-x2)+(1/x1-1/x2)
=(x1-x2)+(x2-x1)/(x1x2)
=(x2-x1){[1/(x1x2)]-1}
因为,x2-x1>0,[1/(x1x2)]-1>0
即有,f(x1)>f(x2)
即,f(x)在(0,1)上为减函数
当然,用求导的方法来做,会更简单(如果已经学了的话)
有不懂欢迎追问
推荐
猜你喜欢
- 有关基因工程的基本工具的几个简答题.
- (1)在微风中,在阳光下,燕子斜着身子在天空中掠过,“唧”的一声,已由这边的稻田上,飞到那边的柳树下了;还有几只横掠过湖面,剪尾或翼尖偶尔沾了一下水面,那小圆晕便一圈一圈地荡漾开去.这一段描写了小燕子活泼机灵的特点.
- 正五边形能不能密铺、正八边形呢?
- 一个圆形舞台,直径是20米,它的周长是多少米?如果在舞台上铺设每平方米80元的木板,至少需要多少元?
- 10-20毫克/千克的赤霉素+0.3%的尿素是什么意思
- 当铝原子变成离子 那么它的核电荷数是多少
- 反法西斯战争的有哪些国家
- 当√2-x有意义时,化简√x2-4x+4-√x2-6x+9的结果