圆O:X^2+Y^2=4,点M(1,根号2),过点M的圆O的两条弦AC,BD互相垂直,求AB+BD的最大值
人气:196 ℃ 时间:2019-08-19 19:56:06
解答
为简化计算,把M(1,√2)绕O旋转至N(0,√3),
设AC:kx-y+√3=0,则
BD:x+k(y-√3)=0,
O到AC的距离d1=(√3)/√(k^2+1),
O到BD的距离d2=|k√3|/√(k^2+1),
d1^2+d2^2=3,
(d1d2)^2<=(3/2)^2,
AC=2√(4-d1^2),
BD=2√(4-d2^2),
设w=AC+BD,
则(w/2)^2=8-(d1^2+d2^2)+2√[(4-d1^2)(4-d2^2)]
=5+2√[16-4(d1^2+d2^2)+(d1d2)^2]
<=5+2√[16-4*3+9/4]=5+5=10,
∴w/2<=√10,
w<=2√10,当d1=d2=√(3/2)时取等号,
∴AC+BD的最大值是2√10.
推荐
- 已知圆O:(x2+y2=4)和点M(1,根号2),过点M作圆O的两条弦AC,BD互相垂直,求AC+BD得最大值
- 已知圆O:x2+y2=4,过点M(1,2)的两条弦AC,BD互相垂直,则|AC|+|BD|的最大值为_.
- 已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,2),则四边形ABCD的面积的最大值为( ) A.4 B.42 C.5 D.52
- 已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值
- 已知AC,BD为圆O:x2+y2=4的两条相互垂直的弦,垂足为M(1,2),则四边形ABCD的面积的最大值为( ) A.4 B.42 C.5 D.52
- fine dining restaurant是什么意思
- 成语预言故事
- 小明用一根绳子测量一棵大树一米高处的树干直径.量拉两次第一次:将绳子对折后,饶树干两周还余下1米.第
猜你喜欢