则:OE²=OC²-CE², OF²=ME²=OM²-OE²=OM²-(OC²-CE²)=OM²+CE²-OC²,
BF²=OB²-OF²=OB²-(OM²+CE²-OC²)=OB²+OC²-OM²-CE²=2(OB)²-OM²-CE².
由题意知:OB=2、 OM=√3 ,故:BF=√(5-CE²).
则:AC+BD=2CE+2BF=2(CE+BF)=2[CE+√(5-CE²)]
由不等式x+y≤√[2(x²+y²)]得:CE+√(5-CE²)≤√[2(CE²+5-CE²)=√10.
所以:AC+BD≤2√10,即AC+BD的最大值为2√10.
![](http://h.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=cc24fc1d510fd9f9a0425d6f151df812/b151f8198618367afd68acbc2e738bd4b21ce5ea.jpg)