> 数学 >
(2012•宿州三模)已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,那么在区间[-1,3]内关于x的f(x)=kx+k+1(k∈R,且k≠1)方程的根的个数(  )
A. 不可能有3个
B. 最少有1个,最多有4个
C. 最少有1个,最多有3个
D. 最少有2个,最多有4个
人气:168 ℃ 时间:2019-09-17 01:00:05
解答
利用偶函数的图象特征画出f(x)在x∈[-1,1]上的图象,再利用函数的周期性画出它[-1,3]上的图象.
由于函数y=kx+k+1 的图象过定点(-1,1),且斜率等于k,如图所示:
故函数y=kx+k+1 的图象与f(x)的图象至少有一个交点(-1,1),最多有4个交点,
故在区间[-1,3]内,关于x的f(x)=kx+k+1(k∈R,且k≠1)方程的根的个数最少为1,最多为4,
故选B.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版