已知f(x)是以2为周期的偶函数,且当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,方程f(x)=kx+k+1(k∈R,且k≠1)有4个零点,则k取值范围是______.
人气:275 ℃ 时间:2019-11-21 21:44:35
解答
∵偶函数f(x)当x∈[0,1]时,f(x)=x,∴当x∈[-1,0]时图象与x∈[0,1]时关于y轴对称,故x∈[-1,0]时f(x)=-x,又∵f(x)是以2为周期的函数,∴将函数f(x)在[-1,1]上的图象向左和向右平移2的整数倍个单位...
推荐
- (2012•宿州三模)已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,那么在区间[-1,3]内关于x的f(x)=kx+k+1(k∈R,且k≠1)方程的根的个数( ) A.不可能有3个 B.最少有1个,最
- 已知f(x)是以2为周期的偶函数,当x∈[0,1]时,f(x)=x,那么在区间[-1,3]内,关于x的方程f(x)=kx+k+1
- 已知f(x)是以2为周期的偶函数,且当x在[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是
- f(x)以2为周期的偶函数,当-1≤x≤0时,f(x)=-x.若方程f(x)-kx-1+k=0在[-3,1]有4个根,求k的范围(最好要解题过程)
- 已知函数f(x)=log4(4x+1)+kx (x∈R)是偶函数. (1)求k的值; (2)若方程f(x)-m=0有解,求m的取值范围.
- 设n为整数.用含有n的代数式表示下列各数:
- 隐函数存在定理疑问--结论:由函数F(x,y)确定了函数y=f(x),此为所谓的存在的隐函数吗?这不是显函数的形式?
- 盐酸和碳酸钙 氢氧化钡和稀硫酸 氨水和醋酸 氯化亚铁和氯气的离子方程式分别是什么
猜你喜欢