设三阶矩阵A各行元素之和均为3 向量α1=(-1 2 -1)^T α2=(0 -1 1)^T 是齐次线性方程组AX=O的解
1、写出矩阵A的全部特征值和相应的特征向量
2、求矩阵A
人气:280 ℃ 时间:2020-03-20 12:46:39
解答
1. 特征值 0 所对应的特征向量是α1=(-1 2 -1)^T α2=(0 -1 1)^T因为 Aα1 = 0 = 0*α1, α2也一样同时 矩阵A各行元素之和均为3 , 所以 A (1, 1, 1)^T = 3 *(1,1,1)^T另一个特征值是3, 特征向量是 α2 =(1,1,1)^...
推荐
- 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0是解,则|A|=?
- 已知3阶实对称矩阵A的各行元素之和为4,向量a(-4,2,2)^T是齐次线性方程组Ax=0的解,
- 设A为n阶矩阵,B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解,则|A|=?求教~
- 设矩阵A=(1 2 1 2,0 1 a a ,1 a 0 1)已知齐次线性方程组AX=0的基础解系含2个向量
- 设3阶矩阵A的各行元素之和都为2,向量α1=(-1,1,1)T,α2=(2,-1,1)T是齐次线性方程组AX=0的解
- 一辆汽车运一堆黄沙第一天运走了总数的8分之3,第二天比第一天多运了总数的12分之1,剩下的黄沙占总数的几
- 英文填空同义句转换
- 拼音yuan是由"y" "v" "an" 拼出还是由"y" "van"拼出?
猜你喜欢