已知A、B为4阶矩阵,若满足AB+2B=0,r(B)=2,且行列式丨A+E丨=丨A-2E丨=0 ,(1)求A的特征值;(2)证明A可对角化;(3)计算行列式 丨A+3E丨 这是完整的题目 根据题目可以得出-1和2两个特征值 根据AB=-2B 然后用Aβ1=-2β1 Aβ2=-2β2 Aβ3=-2β3 Aβ4=-2β4 上面这些是老师解的一部分 我不能理解,然后通过上面可以得出 -2为A的特征向量 然后根据R(B)=2 可知 -2为二重根 我只知道R(2)=2可知有两个线性无关的向量组,难道根据这个有两个线性无关的向量组就可以得出A有4个线性无关的特征向量么?
人气:464 ℃ 时间:2020-01-27 23:07:12
解答
Aβ1=-2β1 Aβ2=-2β2 Aβ3=-2β3 Aβ4=-2β4,这里βi,i=1,2,3,4分别为B的四个列向量,根据等式知:-2是A的一个特征值,由于r(B)=2,那么可以知道βi,i=1,2,3,4的秩也是2,在根据:若一个矩阵M,对应特征值λ为n重,则其...
推荐
- 已知A、B为4阶矩阵,若满足AB+2B=0,r(B)=2,且行列式丨A+E丨=丨A-2E丨=0 ,求A的特征值.
- 设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
- 若4阶矩阵A与B相似,矩阵A的特征值为-1,1,2,3,则行列式|B2-2B|=_.
- 已知四阶矩A与B相似:矩阵为A的特征值1/2,1/3,1/4,1/5,则行列式|B-1-E|=_.
- 设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为
- If your prices are competitive,we will place a large order with you.
- I perfer the pink dress to the green one.
- 写一份英语倡议书,号召大家节约用水
猜你喜欢