求一道三角函数题
f(x)=sin²wx+(根号3)sinwxsin(wx+(pai/2))(w>0)的最小正周期是pai
确定w的值
人气:456 ℃ 时间:2020-05-12 16:56:16
解答
f(x)=sin2wx+√3sinwxsin(wx+π/2)
=1/2(1-cos2wx)+√3sinwxcoswx
=1/2-1/2 cos2wx + √3/2 sin2wx
=1/2-(sinπ/6cos2wx-cosπ/6sin2wx)
=1/2-sin(π/6-2wx)
=sin(2wx-π/6)+1/2
所以它的最小正周期是2π/2w=π/w=π,所以w的值为1
推荐
猜你喜欢
- 一公斤铝合金30元,谁能帮我算出1平方铝合金(厚度为1.0)要多少钱
- 初中物理摩擦力的一个问题
- 玻璃,钢铁,塑胶,橡胶,木材,纸张的制作工艺
- 已知函数y=kx+b的图像中k>0,b>0,则y=2kx+b会由原图象怎样变化得来?
- 窃读记选文主要讲述了我窃读的经历,用简要的语言概括这两次经历的主要内容
- 木厂有28人,两个工人一天可以加工三张桌子,三个工人一天可以加工十只椅子,要使每天生产的一张桌子与...
- 除在文言文中的意思 需要词性+例句+在此句中的翻译+出处
- 若(N+2005)2=123456789,求(N+2015)(N+1995)的值.