∵矩形ABCD

∴AD⊥CD
∴△PEA∽△CDA
∴
PE |
CD |
PA |
CA |
∵AC=BD=
32+42 |
∴
PE |
3 |
PA |
5 |
同理:△PFD∽△BAD
∴
PF |
AB |
PD |
BD |
∴
PF |
3 |
PD |
5 |
∴①+②得:
PE+PF |
3 |
PA+PD |
5 |
AD |
5 |
4 |
5 |
∴PE+PF=
12 |
5 |
即点P到矩形的两条对角线AC和BD的距离之和是
12 |
5 |
法2:

∵AD=4,CD=3,
∴AC=
32+42 |
又∵矩形的对角线相等且互相平分,
∴AO=OD=2.5cm,
∴S△APO+S△POD=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
4 |
∴PE+PF=
12 |
5 |
故选:A.