要证明模p的剩余类环F是一个域,为什么只要证明F中去掉[0]以后的所有元能构成一个乘群就行了.
我的思路和果不一样,首先域是一个交换除环,而剩余类环是交换环,其次剩余类环有非零元和单位元,如果在加上非零元都有逆元这点就是除环了,乘群的定义里面刚好又说明了这点。结束。
人气:382 ℃ 时间:2020-02-05 11:47:02
解答
设F是一个有单位元e1(≠0)的交换环(即对于乘法运算可交换).如果F中每个非零元都可逆,称F是一个域.是域要保证非零元可逆 再加上有单位元 自然就是乘群啦 又模p的剩余类环因为是加群 又满足乘法可交换.故之.
推荐
- 证明:复数域Q(i)的自同构只有两个.证明:模3的剩余类群作为加群有两个自同构,作为域只有一个自同构.
- 设G=(a),F=(b)是两个有限循环群,G的阶是n,F的阶是m,证明:G与F同态,当且仅当m|n.
- 1.什么是满射?定义
- 近世代数 扩域
- 近世代数 关于素数的
- 请问美学、 哲学、 思维、 三者之间是什么关系呢?
- 已知25%氨水的密度为0.91g/cm3,5%氨水的密度为0.98g/cm3,若将上述两溶液等体积混合,所得氨水溶液的质量
- 神侦探柯南在海边散步,无意间,他听到几个海盗在商量如何分赃:(往下看)
猜你喜欢