在ABC中,A,B,C为三个内角,f(B)=4cosB * sin^2(π/4 + B/2)+根号3 cos2B - 2cosB.
1.若f(B),求角B的度数
2.若f(B)-m>2h恒成立,求M的取值范围
1.若f(B)=2,求角B的度数
人气:222 ℃ 时间:2019-10-24 10:58:31
解答
f(B)=4CosB*Sin^2(π/4 + B/2)+√3*Cos2B-2CosB
=4CosB(1-Cos[π/2 + B])/2+√3*Cos2B-2CosB
=Sin2B+√3*Cos2B
=2[Sin2B*(1/2)+Cos2B*(√3/2)]
=2Sin(2B+π/3)
若f(B)=2,则Sin(2B+π/3)=1,解得B=π/12
若f(B)-m>2h恒成立,则f(B)>2h+m
而f(B)的值域为[-1,1]
故2h+m
推荐
- 在三角形ABC中,A,B,C为三个内角,f(B)=4cosB*sin^2(π/4+B/2)+根号3cos2B-2cosB.
- 在△ABC中,A,B,C为三个内角,f(B)=4cosB*sin^2(π/4+B/2)+(√3)cos2B-2cosB
- 在△ABC中,A,B,C为三个内角,f(B)=4cosB*[sin(π/4+B/2)]^2+根号3cos(2B)-2cosB.(1)若f(B)=2,求角B的度数
- 在ΔABC中,A,B,C为三个内角,f(B)=4cosB*sin(π/4+B/2)的平方+√3*cos2B-2cosB拜托各位大神
- 在三角形ABC中,A,B,C为三个内角,f(B)=4cosB*(sin(π/4+B/2))^2+√3cos2B-2cosB
- 知丑的不知足,
- 在△ABC中,猜想T=sinA+sinB+sinC的最大值,并证明.
- 用NA表示阿伏加德罗常数,下列叙述正确的是
猜你喜欢