设a、b、c分别是一个三位数的百位、十位和个位数字,并且a≤b≤c,则|a-b|+|b-c|+|c-a|可能取得的最大值是______.
人气:315 ℃ 时间:2019-10-17 02:41:19
解答
∵a、b、c分别是一个三位数的百位、十位和个位数字,并且a≤b≤c,
∴a最小为1,c最大为9,
∴|a-b|+|b-c|+|c-a|=b-a+c-b+c-a=2c-2a,
∴|a-b|+|b-c|+|c-a|可能取得的最大值是2×9-2×1=16.
故答案为16.
推荐
- 设a、b、c分别是一个三位数的百位、十位和个位数字,并且a≤b≤c,则|a-b|+|b-c|+|c-a|可能取得的最大值是_.
- 求文档:a.b.c是一个三位数的百位、十位和个位数字,并且a小于又等于b小于又等于c,则/a-b/+/b-c/+/c-a/可
- 设a、b、c分别是一个三位数的百位、十位和个位数字,并且a≤b≤c,则|a-b|+|b-c|+|c-a|可能取得的最大值是_.
- 一个三位数的百位数字,十位数字,个位数字依次是a,b,c(c>a),将百位数字与个位数字交换位置,所得的三位数与原三位数的差为 ,它必能被 整除.
- 设a、b、c分别是一个三位数的百位、十位和个位数字,并且a≤b≤c,则|a-b|+|b-c|+|c-a|可能取得的最大值是_.
- 判断:一件衣服,原价为50元,现打五折出售,现价为25元.
- 已知y-m与z-m(m为常数)成正比例,z是x的正比例函数,试判断y与x是什么函数关系
- DC5V是什么意思
猜你喜欢