函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点?
函数z=f(x,y)在点(x0,y0)处fx(x0,y0) fy(x0,y0)存在,则f(x,y)在该点()
A.连续 B.不连续 C.可微 D.不一定可微
人气:414 ℃ 时间:2019-08-21 11:31:40
解答
答案为D,不一定可微.对于多元函数,当函数的个偏导数都存在时,虽然能形式的写出dz,但它与△z之差并不一定是较ρ较小的无穷小,因此它不一定是函数的全微分(根据全微分的定义,同济六版第70页),反例在71页.各偏导数存在只是全微分存在的必要条件而不是充分条件.定理2,也是充分条件,如果偏导数在点(x,y)连续,则函数在该点可微.
我建议您好好看一下课本,了解这些定理和定义是怎么来的,很多问题不攻自破,更不用去死记硬背
推荐
- 函数z=f(x,y)在点(x0,y0)处具有两个偏导数fx(x0,y0)、fy(x0,y0)是函数在该点存在全微分的( )
- 函数z=f(x)在点(x0,y0)具有偏导数,则它在点(x0,y0)的极值的(是什么条件)为fx(x0,y0)=0,fy(x0,y0)=0
- 可微函数z=f(x,y)在点p0(x0,y0)取极值是fx'(x0,y0)=fy'(x0,y0)=0的什么条件?
- 偏导数fx(x0,y0)与fy(x0,y0)存在是函数f(x,y)在点(x0,y0)连续的什么条件?
- “fx(x0,y0),fy(x0,y0)都存在”是“f(x,y)在(x0,y0)点沿任意方向的导数存在”的什么条件?
- 请问一个英文单词 它的拼读是这样的 ai ke che li 艾克撤里
- 文言文:赵简子元日放生(回答问题)
- 已知一个长方形的面积是6m2+60m+150(m>0),长与宽的比是3:2,求:这个长方形的周长.
猜你喜欢