>
数学
>
已知定义在[-1,1]上的单调函数f(x)满足
f(
1
3
)=lo
g
2
3
,且对于任意的x∈[-1,1]都有f(x+y)=f(x)+f(y).
(1)求证:f(x)为奇函数;
(2)试求使f(1-m)+f(1-2m)<0成立的m的取值范围.
人气:360 ℃ 时间:2019-08-17 11:26:06
解答
(1)由题意可知:令x=y=0,则
f(0+0)=f(0)+f(0),
所以f(0)=0,
令y=-x,可知f(x-x)=f(x)+f(-x)=f(0)=0,
∴f(-x)=-f(x),
所以函数f(x)为奇函数.
(2)由f(1-m)+f(1-2m)<0,
∴f(1-m)<-f(1-2m),
又函数f(x)为奇函数,
所以f(1-m)<f(2m-1),
又函数为单调函数,且
f(
1
3
)=
log
32
>f(0)=0,∴函数在[-1,1]上为增函数,
所以
−1≤1−m≤1
−1≤2m−1≤1
1−m<2m−1
,
解得:
2
3
<m≤1
∴m的取值范围为:
2
3
<m≤1.
推荐
已知函数f(x)=log(2)为底数(2X+M)为真数的定义域为[2,+∞),则f(10)的值.
(高一数学)已知函数f(x)=log(2)1+x/1-x(底数是2,真数是1+x/1-x的对数)
函数f(x)是定义在R上的奇函数,并且x属于(0,正无穷)时,f(x)=2^x,那么f(log底数为2真数为1/3)=
已知函数f(x)=log21+x/1−x,(x∈(-1,1). (1)判断f(x)的奇偶性,并证明; (2)判断f(x)在(-1,1)上的单调性,并证明.
若定义在(-1,0)内的函数f(x)=log 以2a为底数x+1为真数 满足f(x)大于0,则a的取值范围是
一个数的2/3是1/2,这个数的2/5是多少{列上算式}
六、列方程解应用题(8分) 28、某鱼场的甲仓库存鱼30吨,乙仓库存鱼40吨,现要再往这两个仓库运 送80吨鱼
已知a^2+a-1=0 (1)a-1/a (2)a2+1/a2 (3)a3+2a2+1
猜你喜欢
一个质量为1Kg的物体漂浮在某种液面上,已知它在液面以下的体积为800立方厘米,求:(1)该物体所受浮力...
28-2.4x=4
电源电压不变,甲乙+的额定电压都是6V,甲灯的额定功率比乙灯的小,如果要使两灯的实际功率相等 电功率
在平原生活的人来到高原血液中的红细胞会有什么变化
奇函数f(x)在R上为减函数,若对任意的实数x,不等式f(kx)+f(-x2+x-2)>0恒成立,则实数k的取值范围为_.
8×40%+2/5÷2/1(能简算就简算)
neither or 与neither nor 的区别
电池12V-7AH/20HR,
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版