> 数学 >
不等式a²+8b²≥λb(a+b)对于任意的a,b∈R恒成立,则实数λ的取值范围为多少.
人气:416 ℃ 时间:2020-04-14 10:16:44
解答
a^2+(8-入)b^2>=入ab
很明显 8-入要大于等于0
所以 a^2+(8-入)b^2 >=2√(8-入) ab
所以2√(8-入) ab >=入ab 即可[2√(8-入) -入]ab >=0ab是大于0 的,若ab<=0是恒成力的若 入<0 恒成立若 入>=0则32-4入>=入^2(入+8)(入-4)<=0-8《入《=4最终答案就是 入<=4
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版