(1/2)求解高数:函数f(x)在区间[a,b]上连续是f(x)在区间[a,b]上可积的( ).A必要条件 B充分条件 C充...
(1/2)求解高数:函数f(x)在区间[a,b]上连续是f(x)在区间[a,b]上可积的( ).
A必要条件
B充分条件
C充要条件
D既
人气:107 ℃ 时间:2020-03-26 08:39:32
解答
(1)f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积.
(2)f(x)在区间[a,b]上可积,则f(x)在区间[a,b]上未必连续.
所以函数f(x)在区间[a,b]上连续是f(x)在区间[a,b]上可积的(充分条件 )
应该选B
参考资料:
推荐
- 设函数f(x),g(x)都在闭区间[a,b]上连续 `````大学高数
- 高数 可积性的简单证明 设函数f(x)在区间[a,b]上可积,且存在 α>0,使得对于任
- 高数题,设函数f(x)在区间(0,1)上连续,则定积分【从-1到1】{[f(x)+f(-x)+x]x}dx=
- 设函数f(x)=exx, (1)求函数f(x)的单调区间; (2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.
- 设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f′(x)≠1,证明在(0,1)内有且仅有一个x,使得f(x)=x.
- 物体做匀加速直线运动,加速度为2m/s2,物体速度的变化是2/s为何不对
- 在梯形ABCD中,向量AB=2向量DC,AC 与BD交于O点,若AB=a,AD=b,则OC=
- 对don not play with the fire怎么回答
猜你喜欢
- 如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.
- rimming 和 vanilla
- 1/x=2是不是一元一次方程?
- 一罐啤酒多少热量相当于几个馒头
- 已知{an},{bn}都是等比数列,它们的前n项和分别为Sn,Tn,且Sn/Tn=(3的n次方+1)/4,对n属于N心恒成立,则a(n+1)/b(n+1)= A.3的n次方 B.4的n次方 C.3的n次方或4的n次方 D.(4/3)的n次方
- 函数f(x)=sinx+2|sinx|(x∈[0,2π)的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是( ) A.[-1,1] B.(1,3) C.(-1,0)∪(0,3) D.[1,3]
- 小明3天看了一本书的4分之一,平均每天看了一本书的几分之几,七天能看完这本书的几分之几
- 放在光滑的水平面上的一辆小车的长度为L,质量等于M.在车的一端站一个人,人的质量等于m,开始时人和车都保持静止.当人从车的一端走到车的另一端时,小车后退的距离为