∴方程ax2+(b-8)x-a-ab=0的两个根为-3,2.
由韦达定理知
|
解得:a=-3,b=5,
∴f(x)=-3x2-3x+18.
(2)y=
f(x)−21 |
x+1 |
−3x2−3x−3 |
x+1 |
x(x+1)+1 |
x+1 |
1 |
x+1 |
1 |
x+1 |
∵x>-1,
∴x+1+
1 |
x+1 |
当且仅当x+1=
1 |
x+1 |
∴当x=0时,ymax=-3.
f(x)−21 |
x+1 |
|
f(x)−21 |
x+1 |
−3x2−3x−3 |
x+1 |
x(x+1)+1 |
x+1 |
1 |
x+1 |
1 |
x+1 |
1 |
x+1 |
1 |
x+1 |