已知△ABC为等边三角形,在图a中,点M是线段BC上任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM相交于Q点
(1)图a中,∠BQM为多少度?
(2)若M,N两点分别在线段BC,CA的延长线上其他条件不变,如图b,(1)中的结论是否成立?如果成立,请加以证明,如果不成立,请说明理由
人气:280 ℃ 时间:2019-10-23 11:21:30
解答
(1)∠BQM=60度.
证明:BM=CN;BA=CB;∠ABM=∠BCN=60度.则⊿ABM≌ΔBCN(SAS),∠BAM=∠CBN;
所以,∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=60度.
(2)结论成立.
证明:BM=CN;BA=CB;∠ABM=∠BCN=60度.则⊿ABM≌ΔBCN(SAS),∠N=∠M;
所以,∠BQM=∠N+∠QAN=∠M+∠CAM=∠ACB=60度.
推荐
- 已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于点Q.下面给出了三种情况(如图①,②,③),先用量角器分别测量∠BQM的大小,然后猜测
- 如图,△ABC为等边三角形,点M是线段BC上的任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM交于点Q. (1)求证:△BAN≌△ACM; (2)求∠BQM的大小.
- 如图,已知△ABC为等边三角形,点M是线段BC上任意一点,点N是线段CA上任意一点,且BM=CN,直线BN与AM相交于点D. (1)猜测:线段AM和BN有怎样的数量关系?并给出你的证明; (2)求∠ADN的
- △ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于多少度?
- 在正三角形ABC中,点M与点N分别是BC,CA上的一点,且BM=CN,连接AM,BN,两线交于点Q,求角AQN的度数
- 以为例,你认为孔子有关人格修养的一些论述今天是否有借鉴的意义?
- 硫酸加入碘化钾淀粉溶液中在空气中放置一段时间后,溶液中的碘离子会被氧气氧化为碘单质,遇淀粉溶液呈蓝色,反应的离子方程式为4H++4I-+O2=2I2+2H2O 这里为什么要加h2so4
- I went to bed after my mother came back.
猜你喜欢