> 数学 >
证明不等式:绝对值sinx2-sinx1小于等于绝对值x2-x1
人气:475 ℃ 时间:2020-01-30 08:48:52
解答
[[注:应用"拉格朗日中值定理"证明]]
证明
构造函数
f(x)=sinx.x∈[x1,x2]
由拉格朗日中值定理可知
函数f(x)=sinx在区间[x1,x2]上连续可导,
∴存在实数t∈[x1,x2]
满足f(x2)-f(x1)=f'(t)(x2-x1)
∵f'(t)=cost,且由三角函数有界性可知 |cost|≤1
∴|f(x2)-f(x1)|=|cost(x2-x1)|≤|x2-x1|
即|sinx2-sinx1|≤|x2-x1|
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版