求和sn=1/2+2/2的平方+3/2的3次方+…+n-1/2的(n-1)次方+n/2的n次方
属于用错位相消法求一类数列前n项的和
人气:374 ℃ 时间:2020-03-29 10:03:01
解答
根据题意:
S(n)=1/2+2/2²+3/2³+……++(n-1)/[2^(n-1)]+n/(2^n)
(1/2)S(n)=1/2²+2/2³+3/(2^4)+……++(n-1)/(2^n)+n/[2^(n+1)]
上面两式相减,得
(1/2)S(n)=1/2+1/2²+1/2³+……+1/(2^n)-n/[2^(n+1)]
=1-1/(2^n)-n/[2^(n+1)]
=1-(n+2)/[2^(n+1)]
所以
S(n)=2-(n+2)/(2^n)
推荐
猜你喜欢
- 半径为哌的圆中,长度为2的弧所对圆心角的弧度数为多少
- 梯形的卡纸,上底长15厘米,下底长19厘米,高10厘米,从中剪出一个最大的长方形,这个长方形的面积是多少
- 当m等于2π时,多项式am3次方+bm+1是0 则多项式4aπ的立方+bπ+5.5=?
- 已知等差数列an的前n项和为Sn,a2=4,S10=110,则当Sn-an取最小值时,an=
- is also unable to say a word ... to ...怎么读
- It is important for them to be in a hand.
- 设f(x)=x+1/x-1,记[x]为不超过x的最大整数,那么[f(2)]+[f(3)]+···+[f(2005)]的值是
- 变加速直线运动的定义是什么?