如图,在三棱柱ABC·A1B1C1中,E,F分别是AB,AC的中点,平面EB1C1F将三棱柱分成两部分,
求V((AEF)-(A1B1C1))/V((BCFE)-(B1C1 )
求V((AEF)-(A1B1C1))/V((BCFE)-(B1C1 )的值
人气:162 ℃ 时间:2019-08-19 17:53:05
解答
由题:设面积AEF为s1,ABC=A1B1C1=s,三棱柱高位h;V((AEF)-(A1B1C1))=V1;V((BCFE)-(B1C1 )=V2;总体积为:V计算体积:V1=1/3*h*(s1+s+√(s1*s))①V=s*h ②V2=V-V1 ③由题意可知,s1=s/4 ④根据①②③④解方程可得...
推荐
- 如图1是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=1,∠A1B1C1=90°,AA1=4,BB1=2,.求此几何体的体积.
- 如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(Ⅰ)求证AC⊥BC1; (Ⅱ)求
- 如图所示,在三棱柱ABC——A1B1C1中,AC=BC=BB1,D为AB的中点,求证:BC1//平面CA1D
- 如图在三棱柱ABC-A1B1C1中E,F分别为AB,AC的中点平面EB1C1F将三棱柱分成两部分求这两部分体积之比
- 如图,在三棱柱ABC—A1B1C1中,点E,D分别是B1C1与BC的中点,求证:平面A1EB‖平面ADC1
- We have fuel for their own future efforts!
- I have to study harder than before(一般疑问句)
- 如图,已知Pa=Pb,求证:点P在Ab的垂直平分线上.
猜你喜欢
- 怎样检测太阳光光照强度和怎样检测太阳能电池板的功率.
- 《春》的几道练习题
- 用对联形式概括其中一个情节
- 非金属置换出金属,金属置换出金属各三个
- 工程队修建一座立交桥,已经修了全长的八分之五,正好超过中点1千米,这座立交桥全长多少千米?
- 今年1月份某地区的农业总产值为a亿元,工业总产值为2a亿元,在2月和3月这两个月中,
- 个圆的半径为1cm,和它等面积的正方形边长是多少厘米?(结果精确到0.01cm)
- 两个自然数,它们的最大公因数是6,最小公倍数是120,这两个数分别是多少?