可导的函数一定连续,但连续函数不一定可导?
后面我知道可以用Y=/X/证明
前面可以用导数的定义即极限给我证明一下吗?
人气:463 ℃ 时间:2020-02-04 09:39:36
解答
证明:(反证)
如若不然,则对于充分小ε>0固定,
取δ=1,存在x1属于|x-x0|ε
同理,取δ=1/2,存在x2属于|x-x0|ε
.
取δ=1/n,存在xn属于|x-x0|ε
得到数列xn,由于xn为有界点列,不妨设其本身收敛,易证极限为x0,
故|[f(xn)-f(x0)]/[xn-x0]|>ε* n ->∞,当n->∞,与可导矛盾
推荐
猜你喜欢
- 清朝九门提督相当于现在的什么官职?
- Japan is _the east of China.A,to B,on ,in选择?为什么?
- 一个数的小数点先向左移动一位,又向右移动了三位后,所得到的数比原数大495,原来这个数是多少?
- There isn't so much pollution in the coiuntry () in big cities
- The story is ___ interesting that many children enjoy it.
- 补充成语;()()不论
- 我们的生活水平不断改善这句话有什么毛病
- 工地上运到一批水泥,第一次搬了30袋,第二次搬了50袋,还剩下这批水泥的七分之三没搬,这批水泥共有多少袋