1²+2²+3²+...+n²
=1*2+2*3+...+n(n+1)-(1+2+...+n)
=-1/3*[0*1*2-1*2*3+1*2*3-2*3*4+...+(n-1)n(n+1)-n(n+1)(n+2)]-n(n+1)/2
=n(n+1)(n+2)/3-n(n+1)/2
=n(n+1)(2n+1)/6
所以
(1²+2²+3²+...+n²)/n³
=(1²+2²+3²+...+n²)/6n³第一步就看不懂了1²+2²+3²+...+n² =1x1+2x2+3x3+..+nxn每项目都加相同的数 再减去相同的数=1x1+1+2x2+2+3x3+3+...+nxn+n-(1+2+...+n)=1x2+2x3+3x4+..n(n+1)-(1+2+...+n)