> 数学 >
x+2/x+1-x+3/x+2-x-4/x-3+x-5/x-4如何分解因式
人气:172 ℃ 时间:2020-05-16 18:43:48
解答
原式=(x+2)/(x+1)-(x+3)/(x+2)-(x-4)/(x-3)+(x-5)/(x-4)
=[(x+2)*(x+2)-(x+3)*(x+1)]/(x+1)*(x+2)--[(x-4)*(x-4)-(x-3)*(x-5)]/(x-3)*(x-4)
=1/(x+1)*(x+2)-1/(x-3)*(x-4)
=[(x-3)*(x-4)-(x+1)*(x+2)]/[(x+1)*(x+2)*(x-3)*(x-4)]
=10(1-x)/[(x+1)*(x+2)*(x-3)*(x-4)]
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版