如果数列{an}是等差数列,设bn=(1/2)^an,数列{bn}是等比数列吗?
人气:410 ℃ 时间:2020-04-09 09:47:13
解答
数列{an}是等差数列,设公差为d,
则an-a(n-1)=d(常数)
bn=(1/2)^an,
则bn/b(n-1)=[ (1/2)^an]/[ (1/2)^a(n-1)]
=(1/2)^(an- a(n-1))= (1/2)^d
因为d是常数,所以(1/2)^d是常数,
∴数列{bn}是等比数列.
推荐
- 正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列
- {an},{bn}中a1=2,b1=4,an,bn,an+1成等差数列bn,an+1,bn+1成等比数列(n∈N*)
- 两个数列{An}{Bn}中,An>0,Bn>0,且An,Bn^2,An+1成等差数列,且Bn^2,An+1,Bn+1^2,成等比数列.
- 各项和为正数的数列an和bn满足an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列 求证(根号bn)是等差数列
- 设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,b1=2,a2=3
- 找课文,A man who never gave up .需要全文.
- obama received the Nobel Peace Prize ,how to criticize this thing
- 表示腿的动作的词(30个)
猜你喜欢