广义积分∫ [1/(x^2+4x+5)]dx = .
人气:125 ℃ 时间:2020-04-16 02:41:22
解答
∫<-∞,+∞> [1/(x²+4x+5)]dx
= ∫<-2,+∞> 1/[(x+2)²+1]d(x+2) + ∫<-∞,-2> 1/[(x+2)²+1]d(x+2)
=arctan(x+2)|<-2,+∞> +arctan(x+2)|<-∞,-2>
=π/2-0+0-(-π/2)
= π
推荐
- 求广义积分∫1到无穷大[1/x(x^2+1)]dx
- 0 到无穷大 dx/((2+x^2)^2),
- 已知广义积分∫e^(k|x|)dx=1,广义积分上限是正无穷大,下限是负无穷大,则k=___?
- 广义积分∫(2,无穷大)1/x(lnx)^k dx收敛,则k的值必满足____?
- 广义积分(下限-∞,上限∞)∫ 1/x^2+4x+5 dx怎么算呢?
- 如图,将三角形的直角顶点放在直尺的一边上,角一=30°,角三=20°,则角二=____
- 翻译成英文:杰克上学经常迟到,多次受到老师的批评.
- 一个等腰三角形的两条边长分别是4厘米和10厘米,它的第三条边长是( )厘米.
猜你喜欢