是否存在实数k,使得函数f(x)=x^2-4-k*|x-2|有且仅有三个零点?求实数k范围
人气:274 ℃ 时间:2020-06-19 07:06:27
解答
先因式分解一下
f(x)=(x-2)(x+2)-k*|x-2|
所以显然x=2是一个零点
其次若x≠2
为了还有两个根,必然一个是大于2的另一个小于2的,
如果都大于2,那么f(x)可以写成一个没有绝对值的二次函数,只可能有2个根,和现有3个根矛盾
1.若有一根x>2
所以f(x)=(x-2)(x+2-k)
一根为2,另一根显然是k-2
且k-2>2
k>4
2.若有一根x
推荐
- 已知a为实数,函数f(x)=2ax^2+2x-3-a,若函数y=f(x)在区间[-1,1]上有零点,求a的范围.
- 已知a是实数,函数f(x)=2ax²+2x-3-a.若函数y=f(x)在区间[-1,1]上有零点,求实数a的取值范围.
- 已知函数f(x)=lxl/(x+2),如果关于x的方程f(x)=kx^2有四个不同的实数解,求实数k的取值范围
- 已知函数f(x)对一切实数x都有f(2+x)=f(2-x),若函数f(x)恰好有4个零点,则这些零点之和为多少?
- 已知a是实数,函数f(X)=2ax^2+2x-a-3,如果函数y=f(X)在区间[-1,1]上有零点,求a的取
- 英语翻译
- 提手旁加个吉加个页念什么
- 等差数列 a1+a4=10 a2-a3=-2 此数列前n项和sn=?
猜你喜欢