求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(a,0)到点B(0,0)的上半圆周
用完格林公式后是怎么做的 求具体过程
人气:228 ℃ 时间:2020-04-09 00:51:46
解答
由于曲线不封闭,补L1:y=0,x:0-->a
L+L1为封闭曲线,可用格林公式:
∫(e∧xsiny-y)dx+(e∧xcosy-1)dy
=∫∫ 1 dxdy
被积函数为1,结果为区域的面积,这是个半圆,面积为:π(a/2)²
=πa²/4
然后将L1上的积分减去
∫L1 (e∧xsiny-y)dx+(e∧xcosy-1)dy=0
因此原积分=πa²/4-0=πa²/4答案是πa^2/8晕了,半圆的面积算错了,哈哈。 应该是:(1/2)π(a/2)²=πa²/8
推荐
- ∫ (e^xsiny-my)dx+(e^xcosy-m)dy其中L是按逆时针方向从圆周(x-1)^2+y^2=1上点A(2,0)到点(0,0)的曲线积分
- 设曲线弧L为x^2+y^2=ax(a>0)从点A(a,0)到点O(0,0)的上半圆弧,求∫(e^xsiny-ay+a)dx+(e^xcosy-a)dy
- 求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(2,0)到点B(0,0)的圆周x^2+y^2=2x
- 计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(0,2)x^2+y^2=2y的右半圆周
- 计算∫L(e^xsiny-3y)dx+(e^xcosy+x)dy,其中L是由点(0,0)到点(2,0)x^2+y^2=2x的右半圆周
- 一道关于测滑轮组机械效率的实验探究题
- 有关地震的调查问卷题目(选择题的)
- 由于温度变化,水,空气,生物等外力的作用和影响,地表或近地造成的破坏,称为(
猜你喜欢