已知椭圆C:x2/a2+y2/b2=1的两个焦点为F1(-1.0),F2(1.0).且经过点
(1,3/2),一组斜率为3/2的直线与椭圆C都相交于不同两点A,B.(1)求椭圆C的方程.(2),线段AB的中点都有在同一直线l上.(3)对于(2)中的直线l,设l与椭圆C交于两点M,N,试探究椭圆上使三角形MNQ面积为根号3/2的点Q有几个?
第二问问的是证明线段AB的中点都在同一直线上?
人气:473 ℃ 时间:2019-08-20 04:03:10
解答
6
推荐
- 已知F1,F2分别为椭圆C:x2/a2+y2/b2=1(a>b>0)的左右两个焦点,
- 椭圆C:x2/a2+y2/b2=1(a>b>0)的左,右焦点分别为F1(-1,0),F2(1,0 )
- 椭圆C1:x2/a2+y2/b2=1(a>b>0)的上下焦点分别为F1、F2
- 椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点,为F1(-c,0),F2(c,0),M是椭圆上一点,满足向量F1M*向量F2M=0
- 已知P是椭圆C:x2/a2+y2/b2=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,且∠F1PF2=θ,
- 通分 2a/(2a+3) 3/(3-2a) (2a+15)/(4a^2-9)
- 抗日战争为什么会发生
- 把一个半径是1分米的圆平均分成若干等分,剪开后拼成一个近似长方形,这个长方形的周长是多少
猜你喜欢