求一个正交的相似变换矩阵,将对称阵化为对角阵!为什么我算出的答案和标答不一样
我求出的正交的相似变换矩阵和答案不一样,我对比一下发现区别:
例如特征值是2,标准答案的矩阵A-2E的基础解系和我写的不一样,具体原因是对矩阵进行行变换时,我比它多进行一个行变换,最后基础解系不同,但我觉得我的没错啊?
到底怎么回事呢
人气:322 ℃ 时间:2019-11-24 10:31:22
解答
单特征值对应的特征向量在不计倍数的情况下唯一
但是重特征值对应的特征向量不唯一,因为特征子空间的正交基选取方式不唯一
只需要验证Q'Q=I和Q'AQ=D即可,不必和答案一致
推荐
- 设矩阵A=(上面1 0 1中0 1 1 下面1 1 2)求A的正交相似对角阵,并求出正交变换阵P.
- 利用正交矩阵将对称阵化为对角阵的步骤是什么?
- 试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵
- 线性代数,试求一个正交相似变换矩阵,将下列对称阵化为对角阵 2 2 -2 2 5
- 求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵 [2,-2,0;-2,1,-2;0 -2,0]
- 一道关于测滑轮组机械效率的实验探究题
- 有关地震的调查问卷题目(选择题的)
- 由于温度变化,水,空气,生物等外力的作用和影响,地表或近地造成的破坏,称为(
猜你喜欢