求一个正交的相似变换矩阵,将对称阵化为对角阵!为什么我算出的答案和标答不一样
我求出的正交的相似变换矩阵和答案不一样,我对比一下发现区别:
例如特征值是2,标准答案的矩阵A-2E的基础解系和我写的不一样,具体原因是对矩阵进行行变换时,我比它多进行一个行变换,最后基础解系不同,但我觉得我的没错啊?
到底怎么回事呢
人气:244 ℃ 时间:2019-11-24 10:31:22
解答
单特征值对应的特征向量在不计倍数的情况下唯一
但是重特征值对应的特征向量不唯一,因为特征子空间的正交基选取方式不唯一
只需要验证Q'Q=I和Q'AQ=D即可,不必和答案一致
推荐
- 设矩阵A=(上面1 0 1中0 1 1 下面1 1 2)求A的正交相似对角阵,并求出正交变换阵P.
- 利用正交矩阵将对称阵化为对角阵的步骤是什么?
- 试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵
- 线性代数,试求一个正交相似变换矩阵,将下列对称阵化为对角阵 2 2 -2 2 5
- 求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵 [2,-2,0;-2,1,-2;0 -2,0]
- 一辆汽车t小时行了s千米,每小时行( )千米,行1千米要(
- 某客运公司买了每辆200万的豪华大客车投入运营,根据调查得知,每辆客车每年客运收入约为100万元,且每辆客车第n年的油料费,维修费及其他各种费用总和P(n)(万元)与年数n成正比,比例系数k=16
- 呃 插入不了图片啊
猜你喜欢