设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+4a4,则方程Ax=b的通解为
人气:139 ℃ 时间:2020-02-05 04:55:55
解答
设x=(x1,x2,x3,x4)',首先考虑对应的齐次方程Ax=0,显然r(A)=3,所以基础解系仅含一个解,
而方程Ax=0 即 x1a1+x2a2+x3a3+x4a4=0 显然有一个解是(1,0,-2,3)' (注:因为a1-2a2+3a4=0)故Ax=0通解为x=k(1,0,-2,3)'
而方程Ax=b 即 x1a1+x2a2+x3a3+x4a4=a1+2a2+3a3+4a4显然有一特解是(1,2,3,4)'
故Ax=b通解为x=k(1,0,-2,3)' +(1,2,3,4)
推荐
- 设矩阵A按列分块为A=[a1,a2,a3],其中a1,a2线性无关,且2a1-a2+a3=0,向量β=a1+2a2+3a3≠0
- 关于线性代数的小问题 设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4
- 设矩阵A按列分块为A=[a1,a2,a3],其中a1,a2 线性无关,且2a1-a2+a3=0,向量B=a1+2a2+3a3不等于0,证明:线性方程组AX=B的通解为x=(1,2,3)^T+c(2,-1,1)^T
- 设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求Ax=b的解
- 已知A是3阶矩阵,a1,a2,a3是3维线性无关列向量,Aa1=a1+2a3,
- 照样子写比喻句.整个森林像着了火一样,绿色在消退,枯黄在蔓延.
- 怎样来表达对祖国的热爱之情
- 将下列英语品牌翻译成汉语!
猜你喜欢