根据式子1/n(n+1)=(n+1)-n/n(n+1)=1/n-1/n+1,计算1/1x2+1/2x3+1/3x4+.+1/2007x2008.要有过程分析
人气:332 ℃ 时间:2019-08-18 07:55:25
解答
按提示,有
1/2 =1-1/2,
1/6=1/2-1/3,
1/12=1/3-1/4,
1/20=1/4-1/5,
.
1/(2007×2008)=1/2007-1/2008,
所以,1/(1x2)+1/(2x3)+1/(3x4)+.+1/(2007x2008)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+.+(1/2006-1/2007)+(1/2007-1/2008)
=1-1/2008
=2007/2008.
推荐
- 根据式子n(n+1)分之1=n(n+1)分之(n+1)-n=n分之1-n+1分之1计算1x2分之1+2x3分之1+3x4分之1+...+2011x2012分之1
- 计算:1/1x2+1/2x3+1/3x4+……+1/n(n+1)=?
- 1/1x2=1-1/2,1/2x3=1/2-1/3,1/3x4=1/3-1/4,则1/2007x2008=(),并且用含有n的式子表示你发现的规律()
- 规律探索:1/1x2=1/1-1/2;1/2x3=?;1/3x4=?;1/n(n+1)=?根据以上规律计算:1/1x2+1/2x3+...1/n(n+1)
- 1/1x2+1/2x3+1/3x4+...+1/n(n+1)怎么算
- 把146分成两个整数之和,一个是11的倍数,另一个是17的倍数,这两个数分别是多少?
- 七尺男儿是多长?尺,厘米,寸如何换算?
- while it is expected that students come university with the ability to take a good set of notes,
猜你喜欢