微积分题目:若∫f'(2x)dx=sin2x+C,求函数f(x)
人气:269 ℃ 时间:2020-05-09 10:39:21
解答
解析:∫f'(2x)dx=sin2x+C
∴1/2∫f'(2x)d2x=sin2x+C
∴1/2f(2x)=sin2x+C
令t=2x,则
1/2f(t)=sint+C
∴1/2f(x)=sinx+C
∴f(x)=2sinx+C'(其中C'=2C.)
推荐
猜你喜欢
- zhao wei and zhou xun are very s - actresses.
- 有一组数:5,10,15,20,25,30你发现了什么规律,用含有字母式子表示
- 证明自己是清白的诗
- 计算:3/4a四次方b七次方c五次方*(1/2ab三次方)*(-3bc二次方)平方
- 解方程组2x+4y+3z=9, ①3x−2y+5z=11, ②5x−6y+7z=13. ③.
- 氧化铜和碳反应在什么情况下生成CO?
- 已知点A(2-p,3+q),先将其沿x轴负方向平移3个单位长度,再沿y轴负方向平移2个单位长度,得到B(p,﹣q)
- 把128厘米的铁丝围成一个长方形,要求长比宽多18厘米.求长方形面积?