F1、F2是双曲线x平方/9-y平方/16=1的两个焦点,P在双曲线上且满足|PF1|.|PF2|=32,求三角形f1mf2
m就是p
人气:440 ℃ 时间:2019-08-17 23:14:21
解答
设∠F1PF2为θ
则cosθ=(PF1^2+PF2^2-F1F2^2)/2PF1PF2=[(PF1-PF2)^2+2PF1PF2-F1F2^2]/2PF1PF2
=[4a^2+2*32-4c^2]/2*32=[4*9+64-100]/64=0
∴sinθ=1 ∴S△PF1F2=1/2*PF1PF2*sinθ=1/2*32=16
故S=16即为所求
推荐
- 点M在双曲线x^2/4-y^2/9=1上,F1,F2是双曲线的焦点,角F1MF2=90度,则三角形F1MF2的面积是什么?
- F1,F2为双曲线x^2/16-y^2/4=1的两焦点,点M在双曲线上,且∠F1MF2=∏/2,则三角形F1MF2的
- 双曲线x29−y216=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,求点P到x轴的距离.
- 双曲线x^2/n-y^2=1的两个焦点分别为f1,f2点p在双曲线上且满足|pf1|+|pf2|=4(n+2)则三角形pf1f1的面积为
- F1,F2是双曲线x平方分之9-y平方分之16=1的两焦点,点P在双曲线上,若∠F1PF2=60°求三角形F1PF2的面积
- f(x)=cosx-(sinx)^2的最大值
- y=Asin(ωx+φ)中各个字母对标准函数的影响
- 次氯酸第一级电离百分比?
猜你喜欢