点M在双曲线x^2/4-y^2/9=1上,F1,F2是双曲线的焦点,角F1MF2=90度,则三角形F1MF2的面积是什么?
人气:298 ℃ 时间:2019-08-18 17:10:45
解答
可以用公式面积S=b²cotα/2=9cot45°=9.这个公式的证明如下:设∠F₁PF₂=α双曲线方程为x^2/a^2-y^2/b^2=1因为P在双曲线上,由定义|PF₁-PF₂|=2a在焦点三角形中,由余弦定理得F₁F...
推荐
- 点M在双曲线x^2/4+y^2/9=1上,F1,F2是双曲线的焦点,角F1MF2=90度,则三角形F1MF2的面积是什么?
- 双曲线x^2/4-y^2=1的两个焦点为F1,F2,点M在双曲线上,△F1MF2的面积为根号3,则向量MF1*向量MF2等于?
- F1、F2是双曲线x平方/9-y平方/16=1的两个焦点,P在双曲线上且满足|PF1|.|PF2|=32,求三角形f1mf2
- F1,F2为双曲线x^2/16-y^2/4=1的两焦点,点M在双曲线上,且∠F1MF2=∏/2,则三角形F1MF2的
- 已知F1,F2分别是双曲线16y^2-9x^2=144的两个焦点,M是双曲线上一点,且∠F1MF2=90°,求△F1MF2的面积.
- 作文 传统于现代
- 在一个停车场里停车一次至少要交费2元.如果停车超过1小时.每多停0.5小时要多交1.5元.这辆汽车在离开停车场
- 在等差数列-5,-7/2,-2,-1/2,...的每相邻两项插入一个数,使之成为一个新的等差数列,则新的数列的通项
猜你喜欢