∵f(x)=
| 1 |
| 2 |
| 1 |
| 2x+1 |
| 2x+1−2 |
| 2(2x+1) |
| 2x−1 |
| 2(2x+1) |
则f(-x)=
| 2−x−1 |
| 2(2−x+1) |
| 2x−1 |
| 2(2x−1) |
即函数f(x)是奇函数;
(2)∵y=2x+1是增函数,
∴y=-
| 1 |
| 2x+1 |
| 1 |
| 2 |
| 1 |
| 2x+1 |
(3)∵f(x)=
| 1 |
| 2 |
| 1 |
| 2x+1 |
∴函数f(x)在[1,2]上也是增函数,
即f(1)≤f(x)≤f(2),
即
| 1 |
| 6 |
| 3 |
| 10 |
即此时函数的值域为[
| 1 |
| 6 |
| 3 |
| 10 |
| 1 |
| 2 |
| 1 |
| 2x+1 |
| 1 |
| 2 |
| 1 |
| 2x+1 |
| 2x+1−2 |
| 2(2x+1) |
| 2x−1 |
| 2(2x+1) |
| 2−x−1 |
| 2(2−x+1) |
| 2x−1 |
| 2(2x−1) |
| 1 |
| 2x+1 |
| 1 |
| 2 |
| 1 |
| 2x+1 |
| 1 |
| 2 |
| 1 |
| 2x+1 |
| 1 |
| 6 |
| 3 |
| 10 |
| 1 |
| 6 |
| 3 |
| 10 |