在梯形ABCD中,AB‖DC,AD=BC,AC⊥BD,O是垂足,CE⊥AB于点E,求证CE=二分之一(AB+DC)
已知在平行四边形ABCD中,M,N分别是BC,CD的中点,AM,AN分别交BD与点E,求证:BE=EF=FD
人气:435 ℃ 时间:2020-03-16 13:04:34
解答
我写得简单一点,网上打符号很不爽~但是保证你能看懂
第一题
从C点做DB的平行线,与AB相交于F
因为AB‖DC,CF‖DB
所以BF=CD,CF=BD
因为AC⊥BD
所以AC⊥CF,即ACF为直角三角形 ①
因为AB‖DC,AC⊥BD
所以△DOC∽△BOA
所以OC/OA=OD/0B,即OC/OD=OA/OB
所以△DOA∽△COB
因为AD=BC
所以△DOA≌△COB
所以BD=AC ②
所以ACF为等腰直角三角形
CE⊥AB
所以CE为等直角三角形斜边AB上的中线,所以CE=(AF)/2=(AB+BF)/2=(AB+DC) /2
第二题
设BD的中点为G,连接MG,易证明
△AFD∽△MFG
所以DF/FG=AD/MG
而MG=AD/2,DM=DB/2
所以DF=2FG=1/3DB
同理,BE=1/3DB
所以BE=EF=FD
推荐
- 在梯形ABCD中,AB//CD,AD=BC,AC⊥BD,O是垂足,CE⊥AB于点E,试探求:CE与AB+DC的关系?并说明理由
- 如图所示,梯形ABCD中,AB//CD,AD=BC,AC垂直BD,O是垂足,CE垂直AB于点E.试探索:CE与AB+DC的关系,并说明
- 如图,在等腰梯形ABCD中,AB∥CD,延长底边AB到E,使得BE=DC. 求证:AC=CE.
- 梯形ABCD中,AB‖DC,AD=BC,AC⊥BD,BE⊥DC,求证BE=二分之一(AB+DC)
- 如图,在等腰梯形ABCD中,AB∥CD,延长底边AB到E,使得BE=DC. 求证:AC=CE.
- Once they find or are given a rule and use it,they'll learn better.
- 质量为10千克的冰块,密度为0.9*10^3kg/m^3.若冰吸热后,有5分米^3的冰融化成水,则水的体积是 米^3
- 有关(历史必修三)朱熹思想的一道选择题
猜你喜欢